Q1.A Travelling salesman has to visit 5 cities the cost of going from one city to another is shown below.
A B C D E
From A [ infi 4 10 14 2
City B 12 infi 6 10 4
C 16 14 infi 8 14
D 24 8 12 infi 10
E 2 6 4 16 infi ]
Soln:
STEP I:
Process row wise
[ infi 2 8 12 0
8 infi 2 6 0
8 6 infi 0 6
16 0 4 infi 2
0 4 2 14 infi ]
STEP II:
Process column wise. Strike out either horizontally / vertically in such a way that maximum number of zeros are covered.
[ infi 2 6 12 0
8 infi 0 6 0
8 6 infi 0 6
16 0 4 infi 2
0 4 0 14 infi ]
STEP III:
Number of Straight lines N=5
Order of matrix n=5
N=n. Therefore the optimal solution is
A B C D E
A [ infi 2 6 12 0
B 8 infi 0 6 0
C 8 6 infi 0 6
D 16 0 4 infi 2
E 0 4 0 14 infi ]
A-->E; E-->A B-->C;C-->D;D-->B
A-->E-->A;
B-->C-->D-->B There is a break in the travel.
STEP IV:
When this situation occurs find the minimum value from the above cost matrix. Here it is 2 cancel this value and the other minimum value '0' in that row.
A B C D E
A [ infi 2 6 12 0
B 8 infi 0 6 0
C 8 6 infi 0 6
D 16 0 2 infi 2
E 0 4 0 14 infi ]
A-->B; B-->C; C-->D; D-->E; E-->A
therefore the optimum sequence is A-->B-->C-->D-->E-->A
4+6+8+10+2
cost=Rs.30
A B C D E
From A [ infi 4 10 14 2
City B 12 infi 6 10 4
C 16 14 infi 8 14
D 24 8 12 infi 10
E 2 6 4 16 infi ]
Soln:
STEP I:
Process row wise
[ infi 2 8 12 0
8 infi 2 6 0
8 6 infi 0 6
16 0 4 infi 2
0 4 2 14 infi ]
STEP II:
Process column wise. Strike out either horizontally / vertically in such a way that maximum number of zeros are covered.
[ infi 2 6 12
STEP III:
Number of Straight lines N=5
Order of matrix n=5
N=n. Therefore the optimal solution is
A B C D E
A [ infi 2 6 12 0
B 8 infi 0 6
C 8 6 infi 0 6
D 16 0 4 infi 2
E 0 4
A-->E; E-->A B-->C;C-->D;D-->B
A-->E-->A;
B-->C-->D-->B There is a break in the travel.
STEP IV:
When this situation occurs find the minimum value from the above cost matrix. Here it is 2 cancel this value and the other minimum value '0' in that row.
A B C D E
A [ infi 2 6 12 0
B 8 infi 0 6
C 8 6 infi 0 6
D 16
E 0 4
A-->B; B-->C; C-->D; D-->E; E-->A
therefore the optimum sequence is A-->B-->C-->D-->E-->A
4+6+8+10+2
cost=Rs.30
No comments:
Post a Comment