Q1. Solve
Player B
B1 B2 B3
Player A A1 [ 1 7 2
A2 6 2 7
A3 5 1 6]
Soln:
STEP 1:
Find out the maximin and minimax values
[ 1 7 2 1
6 2 7 2 maximin=2
5 1 6] 1
6 7 7
minimax=6
maximin != minimax
Therefore no saddle point.
STEP II:
Now compare each row and check whether they are minimum values. If so then delete that row.
Compare A1 and A2 , here few values are minimum and few are maximum.
Now compare A2 and A3, A3 has minimum values therefore delete A3.
By dominance Property, B1 B2 B3
A1 1 7 2
A2 6 2 7
STEP III:
Now compare each column and check whether they are maximum values. If so then delete that column.
Compare B1 and B2 , here few values are minimum and few are maximum.
Now compare B1 and B3, B3 has maximum values therefore delete B3.
B1 B2
A1 1 7 1
A2 6 2 2 maximin=2
6 7
minimax=6
maximin!=minimax
Therefore no saddle point
STEP IV:
a22-a12
p1=--------------------------
(a22+a11)-(a12+a21)
p1=1/2 p2=1/2
a22-a21
q1=--------------------------
(a22+a11)-(a12+a21)
q1=2/5 q2=3/5
a11a22-a21a12
value of game=-------------------------- =4
(a22+a11)-(a12+a21)
SA= [ A1 A2 A3
1/2 1/2 0]
SB=[B1 B2 B3
2/5 3/5 0]
Player B
B1 B2 B3
Player A A1 [ 1 7 2
A2 6 2 7
A3 5 1 6]
Soln:
STEP 1:
Find out the maximin and minimax values
[ 1 7 2 1
6 2 7 2 maximin=2
5 1 6] 1
6 7 7
minimax=6
maximin != minimax
Therefore no saddle point.
STEP II:
Now compare each row and check whether they are minimum values. If so then delete that row.
Compare A1 and A2 , here few values are minimum and few are maximum.
Now compare A2 and A3, A3 has minimum values therefore delete A3.
By dominance Property, B1 B2 B3
A1 1 7 2
A2 6 2 7
STEP III:
Now compare each column and check whether they are maximum values. If so then delete that column.
Compare B1 and B2 , here few values are minimum and few are maximum.
Now compare B1 and B3, B3 has maximum values therefore delete B3.
B1 B2
A1 1 7 1
A2 6 2 2 maximin=2
6 7
minimax=6
maximin!=minimax
Therefore no saddle point
STEP IV:
a22-a12
p1=--------------------------
(a22+a11)-(a12+a21)
p1=1/2 p2=1/2
a22-a21
q1=--------------------------
(a22+a11)-(a12+a21)
q1=2/5 q2=3/5
a11a22-a21a12
value of game=-------------------------- =4
(a22+a11)-(a12+a21)
SA= [ A1 A2 A3
1/2 1/2 0]
SB=[B1 B2 B3
2/5 3/5 0]
No comments:
Post a Comment