Q1.Solve the TP.
D1 D2 D3 D4 Supply
O1 11 20 7 8 50
O2 21 16 20 12 40
O3 8 12 8 9 70
Demand 30 25 35 40
Soln:
STEP I:
Eai=160 Ebj=130.The given TP is unbalnced Therefore add a Destination Column.
D1 D2 D3 D4 D5 Supply
O1 11 20 7 8 0 50
O2 21 16 20 12 0 40
O3 8 12 8 9 0 70
Demand 30 25 35 40 30
Eai=Ebj=160.Now the TP is Balanced.
STEP II:
Now calculate the IBFS using VAM .
The Solution will be,
35
11 20 7 8 0
10 30
21 16 20 12 0
30 25 15 15
8 12 8 9 0
In the above table we have 7 independent non negative allocation and m=n-1=7. non degenerate Basic feasible solution is obtained.
Total Cost= Rs.1160
STEP III:
Now select the row or column which has the maximum number of allocations.
Here in the above table we have the maximum number of allocations in the 3rd row.
Therefore assign u3=0
-----------------------------------------
4 9 35 0 4
11 20 7 8 0 u1=-1
------------------------------------------
10 1 9 10 30
21 16 20 12 0 u2=3
------------------------------------------
30 25 15 15 3
8 12 8 9 0 u3=0
--------------------------------------------
v1=8 v2=12 v3=8 v4=9 v5=-3
c31=u3+v1=8 c32=u3+v2=12 c33=u3+v3=8 c34=u3+v4=9
c24=u2+v4=12 c25=u2+v5=0 c13=u1+v3=7
u2=3 v5=-3 u1=-1
Now calculate
This should be calculated for all the cells which where not allocated.(This should be calculated for the cells in the table which was obtained as a result of applying VAM)
Now (Delta)ij >=0 .Therefore Optimal Solution with Total Cost= Rs.1160.
D1 D2 D3 D4 Supply
O1 11 20 7 8 50
O2 21 16 20 12 40
O3 8 12 8 9 70
Demand 30 25 35 40
Soln:
STEP I:
Eai=160 Ebj=130.The given TP is unbalnced Therefore add a Destination Column.
D1 D2 D3 D4 D5 Supply
O1 11 20 7 8 0 50
O2 21 16 20 12 0 40
O3 8 12 8 9 0 70
Demand 30 25 35 40 30
Eai=Ebj=160.Now the TP is Balanced.
STEP II:
Now calculate the IBFS using VAM .
The Solution will be,
35
11 20 7 8 0
10 30
21 16 20 12 0
30 25 15 15
8 12 8 9 0
In the above table we have 7 independent non negative allocation and m=n-1=7. non degenerate Basic feasible solution is obtained.
Total Cost= Rs.1160
STEP III:
Now select the row or column which has the maximum number of allocations.
Here in the above table we have the maximum number of allocations in the 3rd row.
Therefore assign u3=0
-----------------------------------------
4 9 35 0 4
11 20 7 8 0 u1=-1
------------------------------------------
10 1 9 10 30
21 16 20 12 0 u2=3
------------------------------------------
30 25 15 15 3
8 12 8 9 0 u3=0
--------------------------------------------
v1=8 v2=12 v3=8 v4=9 v5=-3
c31=u3+v1=8 c32=u3+v2=12 c33=u3+v3=8 c34=u3+v4=9
c24=u2+v4=12 c25=u2+v5=0 c13=u1+v3=7
u2=3 v5=-3 u1=-1
Now calculate
This should be calculated for all the cells which where not allocated.(This should be calculated for the cells in the table which was obtained as a result of applying VAM)
Now (Delta)ij >=0 .Therefore Optimal Solution with Total Cost= Rs.1160.
No comments:
Post a Comment