Q1.Solve the following Pay off Matrix
B1 B2
A1 [ 5 1
A2 3 4]
Soln:
STEP I:
Find the row minima and colmn maxima, and find out the maximin amd minimax values.
[5 1 1
3 4] 3 maximin=3
5 4
minimax=4
maximin != minimax
Therefore there is no saddle point.
a22-a12
p1= --------------------
(a11+a22)-(a12+a21)
p1=(4-1) / (5+4)-(1+3)
p1=3/5 p2=1-p1=1-3/5=2/5
p2 = 2/5
a22-a21
q1= --------------------
(a11+a22)-(a12+a21)
q1=1/5 q2=4/5
a22a11-a12a21
Value of game= --------------------------- =17/5
(a11+a22)-(a12+a21)
Optimum Strategies are given by
[ A1 A2
SA= 3/5 2/5]
[B1 B2
SB = 1/5 4/5]
B1 B2
A1 [ 5 1
A2 3 4]
Soln:
STEP I:
Find the row minima and colmn maxima, and find out the maximin amd minimax values.
[5 1 1
3 4] 3 maximin=3
5 4
minimax=4
maximin != minimax
Therefore there is no saddle point.
a22-a12
p1= --------------------
(a11+a22)-(a12+a21)
p1=(4-1) / (5+4)-(1+3)
p1=3/5 p2=1-p1=1-3/5=2/5
p2 = 2/5
a22-a21
q1= --------------------
(a11+a22)-(a12+a21)
q1=1/5 q2=4/5
a22a11-a12a21
Value of game= --------------------------- =17/5
(a11+a22)-(a12+a21)
Optimum Strategies are given by
[ A1 A2
SA= 3/5 2/5]
[B1 B2
SB = 1/5 4/5]
No comments:
Post a Comment