Showing posts with label Maximin minimax principle. Show all posts
Showing posts with label Maximin minimax principle. Show all posts

Saturday, 14 December 2013

Game Theory Example

Q1.Solve the game whose Pay off Matrix is given by

                           B1          B2          B3           Player B
Player A  A1   [  1              3            1
               A2       0             -4          -3
               A3       1              5           -1]


Soln:
STEP I:
Find out the Row minima and column maxima.

              [1       3       1        1
               0       -4      -3      -4        maximin=1
               1        5       -1]     -1

               1         5        1
  minimax=1

STEP II:
maximin=minimax=1
There exists a saddle point value of game = 1
The optimal strategy is (A1,B1)    -->  this  value is the intersection of maxima and minima.
The game is strictly determined since maximin=minima   is not equal to  0

Q2. Solve:

[ 0      2
 -1      4]

Soln:
STEP I:
     [ 0      2   0
      -1      4]  -1     maximin=0
       0       4
minimax=0

STEP II:
maximin=minimax=0
there exists a saddle point value of game=0
The optimum strategy is (A1,B1)
The game is fair since maximin=minimax=0